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ABSTRACT 

Because materials are often stressed into the olastic ranpe in 
light weight construction, a need exists for information concerning 
the plastic behavior of structural members. A plate subjected to lateral 
loads is such a structural member. In this report, we use several 
general methods of plasticity to obtain information about the plastic 
behavior of circular plates and we suggest how these methods cun be 
extended to rectangular plates. 

In this report, the kinematic relations connecting the displacements 
of the neutral surface to the strains are those of the small deflection 
theory of bending. The stress-strain relations are those of the theorv 
of plastic deformations (secant modulus theory). In the last chapter, 
the comparison of the theory of plastic flow and the theory of plastic 
deformations indicates that only slight differences would be found in 
numerical results calculated by either of these two theories. 

The four approximate methods which are applied to circular plates 
are 

l). Sokolovsky's Method, 
2). Iteration Method, 
3). Potential Energy Method, 
U). Complementary Potential Energy Method. 

Sokolovsky reduces the equations relating the moments, curvatures, and 
loads of the plate to two simultaneous first order non-linear differential 
equations. These equations are then solved by numerical integration. The 
iteration method, developed by Ilyushjn, is adapted for the bending of 
circular plates. In this method we separate a non-linear second order 
differential equation into a linear portion and a non-linear portion. The 
effect of the non-linear portion on the solution is found by the iteration 
procedure. The principle of minimum potential energy is used to estimate 
the circumferential curvature of the plate by means of functions containing 
arbitrary parameters. These parameters are evaluated by Galerkin's Method. 
The principle of minimum complementary potential energy is used to estimate 
the radial bending moment in the plate by a similar process. 

Numerical results are obtained by all four methods for a simply 
supported uniformly loaded plate for a material where the second stress 
invariant S is related to the second strain invariant E by 

S - 2G(1 - XE^E. 

A comparison of the results of the above methods is riven in the last 
chapter of this report. Also, in this chapter, the last three of the 
above approximate nethods are developed for rectangular plates, but no 
numerical calculations are made. 
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CHAPTER I 

INTRODUCTION 

1.1 The Problem Before Us. 

The circular plate symmetrically loaded by lateral forces is a 

structural member which the practicing engineer often encounters. A 
a 

schematic diagram of the problem is shown in figure 1. The circular 

symmetry of the loading enables the deflection and stress condition of 

the plate to be represented as functions dependent upon the radial 

distance r. Thus, the physical relationships are expressed in terms 

of ordinary differential equations. 

This work considers the small deflection theory of plates due 

to lateral loads. The strain" of the neutral surface and the quadratic 

terms in the strains due to bending are neglected. The laws of the 

1 
theory of plastic deformatiorj are used instead of elastic stress- 

strain relationships. 

Naphdi (l) considers the large deflection theory of circular plates 

with stretching of the neutral surface. Gleyzal (2), Mostow (3), and 

Hill (U), approximate the stress condition for the large deflections 

of thin plates by considering only membrane stresses and strains. 

1.2 Objective 

For a general problem, such as the bending of a plate, several 

procedures are available for obtaining a solution. The preferable 

method, in any particular case, depends upon the accuracy and infor- 

mation desired. The most desirable method is one which yields the 

exact solution. For the plastic bending of a circular plate no such 

• 

• 



exact solution has been found. Therefore, this thesis applied several 

general methods of plasticity to obtain approximate solutions and a 

comparison is made of the accuracy and labor involved in these methods. 

In the actual computation of the example problem, a dimensionless 

parameter appears in terms of which the range and accuracy of the 

various methods are indicated. The comparison of the results, obtained 

by the different methods of solution applied to the problem of the 

circular plate, should give some insight into those problems which 

present greater mathematical difficulties, such as the bending of 

rectangular plates. 

1.3 The Kinematic and Equilibrium Equations for the Symmetrical Bend- 

ing of Circular Plates. 

This section states the kinematic and equilibrium conditions for 

the symmetrical bending of circular plates. A complete presentation 

of what is mentioned here is given by Timoshenko (3>) (Chap. 3)» 

The following assumptions are madet 

a). The defloction of the neutral surface of the plate is of 

such a magnitude that the quadratic terms dueto bending are neglected 

in the strain formulae. 

b). The elongation of the neutral surface and the membrane stresses 

are neglected. 

c). Normals to the neutral surface before deflection are normal 

to the neutral surface in the deflected state. 

d). The normal stress <j- is assumed zero throughout the plate. 
z 

e). One additional condition is assumed due to the nature of 

the plastic laws. This condition is that the loading is applied proportionally 

1 
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and increases monotonously. Hence, only loading is considered. 

In statinr the kinematic relations of the plate the following 

notations are used. 

w • deflection of the neutral surface from the unstrained to the 

strained condition. 

a. - 1/^PQ " circumferential curvature, 

a • l/p • radial curvature 

u " radial displacement 

z - distance from the neutral surface. 

The curvatures are expressed in terms of the deflection as 

-1/r 
dw 

and  a 
d2w 

d^* 
(1.1) *9    *'* 3r 

The geometry of figure 2 suggests the physical significance of aQ 

and a . The radial radius of curvature, -P, is the radius of curvature 
r ' r* 

of the intersection of the neutral surface and the vertical plane con- 

taining a radius of the plate. The circumferential radius of curvature, 

-P , is the radius of curvature of the intersection of the neutral 

surface and the plane perpendicular to the tanpent of the curve in the 

neutral surface at Q • const. 

The geometry of figure 3 gives 

dw 
u "-zdT- 

Due to the circular symmetry of the probl«m, the circumferential dis- 

placement is zero. 

From known formulae for the strains in terms of displacements, the 

equations for the radial strain, e , and the circumferential strain, eQ, 

are 

iw^'*1 "»'|,W' 
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e    «£ cifw 
r     3F ^7 r 

and (1.2) 

u z dw 
e0     r r 3F     M9 ' 

Anuther Lniportant equality derived from (1.1) is 

d(ro ) 
-g^- - «r • (1.3) 

The following notation is used to formulate the equilibrium 

equations t 

p(r) • lateral load per unit area. 

Q   • radial shearing force per unit length. 
r 

M   • radial moment per unit length. 

Hp  • circumferential moment per unit length. 

1 pictorial representation of these quantities is given in figure U. 

The definition of the moments is 

Mr " 2 S  <rr**> 
o 

and (1.10 

f Mg - 2 ) O^ adz, 
o 

where 0"  is the radial stress and <Tn  is the circumferential stress, r 9 

It has been assumed that the radial and circumferential stresses have 

point symmetry about z » 0. 

Consideration of the equilibrium of the forces on the circular 

section of the plate shown in figure Ua* yields 

rQr - j prdr. (1.5) 
o 



The equilibrium equation is found by usinp the above equality and the 

equilibrium of the moments on the element shown in figure Ub 

d(rM ) 
r - Mg + j prdr - 0. (1.6) 

l.U Development of the Stress-Strain Relationships. 

This work is not intended to be a discussion of the relative 

merits of the different theories of plasticity; therefore, this section 

briefly presents the laws of plasticity used in this paper. A complete 

development of the relationships used in this section is piven by 

Sokolovsky (6) (chap. l). A thorough explanation of the yield condition 

is found in the book of Hill (7) (chap. 2). The theory of plastic 

deformations (secant modulus theory) is used. 

The plastic stress-strain relationships are now introduced. The 

principal stresses are cr , o~n> ***& <T • The principal strains are 

e . e.. and e . 
r* 0*    z 

The mean stress is 

<*• 1/3 (<rT * <r9 • cr ). (1.7) 

The mean strain is 

e - 1/3 (er • eQ • tj. (1.8) 

The stress deviations are 

8i _Qri "°"*i " r' 9* z^' (lm9^ 

The strain deviations are 

ei " 6i " * ^ M r» 9» •)• (1.10) 

The second stress invariant is 

S2 - \  (s/ • sQ
2 • sz

2). (1.11) 



i 
The second strain invariant is 

E' " I (er2 * \    * O' (1.12) 

The following assumptions of the secant ©dulus theory are used. 

a). The stress deviations are oroportional to the corresponding 

strain deviations. 

s   s_  s 
r _ 9 _ z 

e   eQ  e 
r   9   z 

With the use of alpebraic operations and the definitions (1.11) and 

(1.12), the above relation is formulated as 

s s_  s   „ r _ 0 _ z _ S 
e en     e   E* 
r 9   z 

(1.13) 

b). The second stress invariant is a function of the second strain 

invariant. This relationship is written as 

S - 2G | 1 - f (E)l E. (l.Ui) 

If the relationship between S and E has point symmetry about the origin, 

thenf(E) is an even function of E. Thus, the function, f(E), can be 

expressed as 

f(E) -fix a2", d.i5) 
5=1 n 

where the X»s are constants. 

c). The material is incompressible, 

e - i (er * eQ • t%)  - 0 

from which it follows that 

ez • " (e9 + er}' (1.16) 



This assumption rreatly simplifies the .lathematical formulation of the 

problem. 

The principal stress deviations and stress invariant are obtained 

by using equations  (1.7),   (1.9),   (1.11), and assumption d in section 1.3 

that cr  " 0: z 

8r " ! (°r " TT>» S9 " ! ((r9 " TT>- 3z - " T (or • °Q>        (1'17) 

S2-!(<rr
2-<yre*<re

2), (i.ie) 

The principal strain deviations and strain invariant are obtained with 

the aid of equations  (1.8),   (1.10),   (1.12), and  (1.16): 

e_ • e^, en - eot e_ » e_ • - (e__ • e,J (1.19) r      V "9     "9* ~z     ~z - (er + e9) 

22 " er2 + er69 * e92 (1.20) 

With the expressions  (1.13),   (1.15),   (1.17),   (1.19), and  (1.20), the 

principal stresses <T   and <T   are expressed in terms oi" the principal 

strains: 

cr   - UG r 

oo 2,n 
*-**   nr r9       9 x r       2 •*•) 

<rQ-U0 l-gXn(er
2
+ere9 + ee

2)n](e9 + !f-) 
(1.21) 

These are the stress-strain relations. 

1.5 Formulation of the Basic Plate Equations. 

This section Dresents the formulae which are used in the solution 

of the bendinp of a circular plate. 

•V- 



By substituting expressions   (l.l) and   (1.21) into equations   (l.U) 

and integrating, we find the bending rioraents 

M    - D  (1 - B)  (a    • r r T ) 

(1.22) 

Mg - D   (1 - B)   (aQ • -§-), 

where 

D - 8h ̂
G 

(1.23) 

B - 
3X h n 

2n 

w <«/*Ve*<'9
2>n- 

The integration of (l.U) is possible because the a and aa  are constant 

for a riven r by assumption c in section 1.3. The constant D is the 

customary expression for the flexural rigidity of a plate in elasticity. 

The quantity B expresses the non-linearity characteristic of the plastic 

stress-strain relationship. 

The solution for the bending of the ciicula;" plate is found when 

M , If, a , afl, and w are found as functions of r. The five relation- 

ships in (1.1), (1.3), (1.6), (1.22) are sufficient for the determi- 

nation of the above functions. The combination of these five equations 

yields 



I 
I 

"I 

f 

dr 

d3w     1 d2w       1   dw        1     (T 

r3*r-2'-r&mnF ) prdr (1.214) 

dr/W      Z'^fej!     2n+ 

o 

2n 

I ^ ' 7? 

•I 1   dwlf,   3V 1 d2w 
2a r 

dV2 

The values M , JL, a , aQ$ and w are not found by solvinr equation 

(1.2ii) directly.    Different dependent variables are introduced in this 

thesis which reduce the numerical work in the various approximate 

methods. 

Table I is compiled for future reference.    The formulae in this 

table are (1.1),  (1.3),  (1.6),  (1.22), and  (1.23). 

TABLE I 

1 dw 
0 " " r dr 

d(ro ) 
« T^~ r dr 

d(rMJ cx 
dr prdr • 0 

9 Mr - D(l - B)   (or • -£-), M9 - D(l - B)  (aQ • ^-•) 

.2n 
8hJ 

D - £2- G, B 
o°    3X_h _ 

^—      n 

(i.) 

(ID 

(in.) 

(IV.) 

(v.) 



CHAPTER II 

THE METHOD OF SOKOLOVSKY 

2.1 Mathematical Formulation of the Problem. 

Sokolovsky (6) (chap. lU) treats the problem of the bendinp of 

a circular plate syranetrically loaded. In orinciple, Sokolovsky 

reduces fornulae II, III, and IV into two simultaneous first order 

ordinary differential equations. By the introduction of two new 

variables, a magnitude factor A and an angular factor co, which re- 

place the curvatures a and afl, these two differential equations can 

be expressed in a convenient form. The variables A and co are defined 

in terms of a and a. as 
r    0 

a =• sin (<D - n/6), a. - -=• sin (to + n/6), 
r    j H   j 

(2.1) 

With the use of (2.1), the following identity for A is formed: 

A2 - or
2 • orOe + ae

2. (2.2) 

A combination of (1.2), (1.20), and (2.2) yields 

B2 - z2A2, (2.3) 

which shows that the factor z is the proportionality constant between 

B and A. This same proportionality exists between the principal strains 

and the curvatures as seen in (1*2). 

A graphical representation of o> is given in figures 5a and 5b. 

The normal of the plane of figure 5b makes equal angles with the 

three orthogonal axes a ', a •, - (a • • oQ') of figure $&.    This 

plane is called the octahedral plane. The axes shown in figure 5b 

10 
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are the projections of the axes of firure 5a. A vector with the 

components \/2/3 o ', /2/3 a •, and /2/3 | - (o ' • a ' )~1 > has the 

length 2//3A and lies in the plane of figure 5b. The vector 2//3A 

lie3 at an anple co, as shown in figure 5b. It has the orthogonal 

projections a and o0 on the axes a and afl in the octahedral plane. 

When the proportional nrincipal strains aie substituted for the 

curvatures in the a^x>ve fraphical representation, the vector 2//3A 

becomes the octahedral shearing strain. 

With the substitution of (2.1) and (2.2) in IV and V of Table I, 

the moments are expressed as 

M • D (1 - B) A cos (w • n/6), (2.U) 

1^ - D (1 - B) A cos (co - n/6), 

where 

B 
n-1 

3\ n 
2n • 1 

(hA)2n. (2.5) 

The substitution of (2.1) into II of Table I yields 

r sin (co + n/6) 5- • A cos (co + n/6) -*- • /3A sin co - 0. (2.6) 

Similarly, the substitution of (2.U) into II of Table I pives 

I Cl r I  1 (co - n/6) (1- g) £ - (1 - B) A sin (co • n/6) ^ •] 
- (1 - B) A sin co • \ rp (r) dr/D - 0. (2.7) 

These two equations are reorganized into a more convenient form for 

numerical calculations when the derivatives of 65 and A are separated. 

This separation yields 

T 
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-1 

(l-B)-AJg*AJ}| sin2 (to • it/6) g£ - ^3" A2 jg sin co cos (co * n/6) 

• A (1 - B) sin 2 co - sin (co • n/6) )    rp(r) cir/D - 0 (2.8) 

(1 _ B) - A g • A H sin2 (to • n/6) 

• cos (co • n/6) \ rp(r) dr/U - 0. 

-j± • 2A(1 - B) sin 2co dr 

£ (2.9) 

Equations (2.8) and (2.9) are the desired first order ordinary 

differential equations. They can be solved by numerical .Tiethods when 

definite stress-strain laws and boundary conditicns are piven. When 

r - 0 and A / 0, equations (2.8) and (2.9) both yield co - 0 and A 

Is finite. The substitution of co - 0 into (2.U) gives 

Mr " M© " ^ D(l " B) A' 

Expression III Table I also yields that M - M_ at the center of the 

plate where r • 0. Thus, one boundary condition is: 

At the center of the plate where r • 0 

M M„ or co - 0 . (2.10) r   6 

Two boundary conditions are necessary to solve equations (2.8) and 

(2.9). The second boundary condition is obtained by physical restrictions 

on tho curvatures or moments at the outer edge of the plate. With the 

use of either equations (2.1) or (2.U) and the piven boundary conditions 

at the outer edge of the plate, values for A or co are determined for 

this outer boundary. In the next two sections, a method of solution 

is demonstrated by solvinp an example problem. 

\ 

•*4C-<*4»*- ••*••-• • 
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2.2 The Illustrative Example. 

An illustrative example of a sinply supported plate with constant 

pressure p is solved to indicate the .-nethod of solution for (2.8) and 

(2.9). The stress-strain relation (l.lU) is assumed as 

S - 2G (1 - XE2) E. (2.11) 

A graphical representation of this curve is given in figure 6 which 
i 

shows a horizontal tangent at E • E * From the condition of a hori- 

zontal tangent at E , the constant X is determined by 

d S/dE - 2G (1 - 3XBQ
2) - 0. 

from which it follows 

X - 1/3 EQ
2
. (2.12) 

Two new dimensionless variables a and y are introduced to simplify 

the form of (2.8) and (2.9) for this example. These variables are 

expressed in terms of A and r as 

a - A/AQ, y - (X
l/2 h p/D)l/2r, (2.13) 

where the constant A is defined by o * 

h2A 2 - 1/3 X. (2.Hi) 

The maximum E oust occur at z » h, and E is the maximum permissible 

strain invariant. A combination of (2.3), (2.12), and (2.lli) gives 

2   2 2 E  • h A ; thus, A can be interpreted as a measure of the maximum 
o     o''o r 

permissible strain condition in the plate. This interpretation limits 

the value of a to O^a £1. The factor B, which is given in expression 

(2.5), is given in terms of a as 



Hi 

B - I Xh2A2 -0.2a2 (2.15) 

for the stress-strain relation (2.11). When the pressure p is constant, 

the load intepral is 

o 

With the use of  (2.15) and  (2.16), equations   (2.8) and  (2.9) are 

expressed in terras of the variables co, a, and y as 

ya jl - 0.6a2 + O.lia2 sin2 (co • n/6)    -r 0.6928 a? sin co cos  (co • n/6) 

• a (1 - 0.2a2) sin 2 co - 0.866 y2 sin (co • n/6) - 0 (2.17) 

| prdr - pr2/2. (2.16) 

y [l - 0.6a2 • O.Ua2 sin2(co + n/6)J ~ • 2a  (1 - 0.2a2) sin2co 

• 0.866 y2 cos   (co + tt/6) - 0 (2.18) 

For a simply supported plate the radial moment is zero at the 

outer ed|?e of the plate.    From (2.U),  this boundary condition is 

evaluated as: 

1).    At the outer edge of the plate, r • b 

Mr - 0 or co(Y) - it/3 where Y - \j}^2  h pb2/D| ^2,     (2.19) 

2). At the center of the plate, r - 0, expression (2.10) gives 

M - M  or co - 0 at y - 0. (2.20) 

Conditions (2.19) and (2.20) determine unique solutions of (2.17) 

and (2.18). 

A step by step numerical integration of (2.17) and (2.18) can be 

started when a value for "a" at y - 0 is chosen. This step by step 
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integration is continued until u> - n/3, and by condition (2.19) the 

value of Y, where GO • n/3, determines the outer boundary of the plate. 

When Y is prescribed, a series of starting values for *a" are assumed. 

These starting values are adjusted until one fives the correct T at 

W/yN * n/3« In the next section the numerical procedure is explained 

by an exar^le where the initial conditions are y - 0, <x> - 0, and 

a - 0.5. 

2.3 The Numerical Integration: 

A numerical method used for computational work should have a 

checking procedure. When evaluation of the numerical steps )>econes 

tedious, calculation errors arise unless an automatic check is available. 

An accurate procedure satisfying the above conditions is Milne's 

Method. Scarborough (8) (pp 2i*5 and 295) gives a thorough explanation 

of this process. In this method, the following formulae are used: 

Milne's formula 

ID 
(1) as + Ui A y /, dcol deal _ do>|  \ 

*n+l _ "h-3  '      3      (^ a?|n-2 " dy ln-1     £ Hyln^ * 

Simpson's formula, which is used as a check, 

(2) _ ..Ay /dtol        ^ ,dttl    t dui     \ 
Vl " Vl + T tayln-l + Udy|n + 3y1n*lJ 

and the error term 

error 1 /(I)   (2)\ 

(2.21) 

(2.22) 

(2.23) 

Milne's formula passes a curve through four points and estimates 

the value of the function at the fifth point by an extrapolation of 

the curve, (see figure 7). When the value of w 1  is calculated with 
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the aid of formula (2.21), the given differential equation is used 

to find the slope -r— L+1» The value of g|   - obtained from the 

above procedure is used in Simpson's formula, (2.22), to make a 

(2) 
second approximation for co\{» 

When exact values are used in (2.21) and (2.22), formula (2.21) 

gives an co . which is too small while (2.22) gives an co _ which 

is too large. A consideration of the terms which are neplected in 

the extrapolation formulae (2.21) and (2.22) shows that the maximum 

deviation from the true curve is piven by the formula (2.23). Thus, 

formula (2.22) provides a check on the numerical calculations for 

(2.21), and (2.23) gives a means of determining the accuracy of the 

approximation method. 

Before Milne's Method can be applied, the values of the function 

and its first derivatives at four points must be obtained. The value 

of the function at the second point is found with the aid of Euler's 

averaging method. The formula used in this method is 

•*•-. **?(&. •£!,.). <*-a> 
The value of the function at the third and fourth points is found by 

applying Simpson's formula, (2.22). The numerical procedure is 

explained by showing the steps involved in solving equations (2.17) 

and (2.18) when the initial conditions are co, » • 0 and a, » • =•. 
(o)        (o)  2 

The solutions of equations (2.15) and (2.16) for dto/dy and 

da/dy are 
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\[o.69?8 a3sin co cos  (to • n/6) - a(l - 0.2a2)sin 2 

dco/dy-    (• 1 0.866 y2sin  (co • n/6] 

ya Jl - 0.6a2 • O.Ua2 sin;' (<o • n/6)) 
(2.25) 

- da/dy 2a (1 - 0.2a2) sin2co • 0.866 y2 cos  (co • n/6) 

yfl - 0.6a2 • O.Ua2 sin2  (co • n/6)] (2.26) 

For the initial starting value of co - 0, formulae  (2.25) and  (2.26) 

yield indeterminate equations for -»— and 3—.    These equations are of 

the form 0/0.    The evaluation of (2.25) and  (2.26) at co - 0 can be 
2 

accomplished by expanding sin co and sin co about co - 0 in terms of y. 

These expansions are 

sin co dco 
d7 

y2    d col 
5T  77    * — dy |o 

sln2co-2yg|o • y2 
.2 d co 

7 
With the substitution of these expansions  into  (2.25) and  (2.26), 

the limits of the expressions for the derivatives as y->0 are 

lim     da lim 
y-»0 

dco m _ ? dco 
3y     ~     3y o '    y-*0   3y - 0 . 

This procedure yields starting values for dco/dy and da/dy of 

0      ,      ~ - 0  . dco 
dy 

da 
3y (2.27) 

For an increment in y, steps of 0.05 are chosen. The initial increment 

in y should be small because of the irregular behavior of co at the 

origin. Also, the checking methods do not apply until the values for 

a, co, dco/dy, and da/dy are calculated for four values of y. 

W& 
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First step: Calculation for the point y - 0.0?. 

The values co • 0 and a • 0.5 in the row y * 0 in Table II are 

the prescribed initial conditions. First approximations for co and a at 

y • 0.05 are assumed to be co • 0 and a • 0.5. First aoproximation3 

for dco/dy and da/dy at y • 0.05 are obtained by using these values of 

co and a in formulae (2.25) and (2.26). The newly calculated dco/dy 

and da/dy are substituted in formulae (2.2U) to obtain second approxi- 

mations of co and a. These values of co and a can be substituted in 

formulae (2.25) and (2.26) to calculate second approximations for 

dco/dy and da/dy. With these values of the derivatives, third approxi- 

mations for co and a are obtained from the expression (2.2U). 

This process of approximation is repeated until the values for 

dco/dy and da/dy remain stationary in which case the co and a given by 

(2.2U) remain constant. These stationary values of co, "a" and their 

derivatives are given in the row y - 0.05  * Table II. 

In the above procedure, the values of co oscillate about the 

stationary co with a decreasing amplitude. With the use of slirht 

alterations in the value of co towards the center of the oscillation, 

the number of calculations can be reduced. The magnitude of these 

alterations can be estimated after the first two calculations. 

Second Step: Calculations for the points y "0.10 and y • 0.15. 

Approximate values of co and a at y • 0.10 are obtained with the 

use of Simpson's formula, (2.27). In Simpson's formula, however, the 

value of the derivative at the point to be calculated must be known. 

Therefore, an estimation of this derivative is made by a linear extrapolation 
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of the two preceding derivatives. The approximate values of co and a 

calculated by Simpson's formula are substituted into expressions (2.2J>) 

and (2.26) to obtain new estimates of the derivatives. These values 

of the derivatives are used to make new approximations for co and "a" 

with Simpson's formula. Two calculations are usually sufficient to 

obtain the desired accuracy for the value of the functions and their 

derivatives. Exactly this same procedure is used to make the calculations 

for co and "a" at y • 0.1$. The results of these calculations are shown 

in Table II. 

Third Step: Calculations for further values of y. 

Once four values of co. a, and their derivatives are obtained, the 

regular numerical integration procedure is adopted. Formula (2.21) 

gives the values co* i and aV: for y - 0.2. These values are substi- 

tuted into formulae (2.25) and (2.26) to calculate dco/dy  . and 

da/dy  .. These values of to, a, and their derivatives are entered 

in the row y - 0.2. 

All the quantities which are necessary to use formula (2.22) 

(2)     (2) 
are obtained. The second calculations for co ' and a ' are made 

n+1    n+1 

with Simpson's formula. An estimate of the error is made with expression 

(2.23) where mistakes in the numerical work or too large a choice of 

the increment produce a maximum error which is too large. 

The accuracy of this nethod is such that larger increments can 

be used once enough starting values are calculated. Thus, when values 

for co, a, and their derivatives are calculated up to y - 0.3, enough 

information is available to use Milne's Method with increments of 

1 
i#* 
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y • 0.1. Table III is constructed to show the calculations for incre- 

ments of y - 0.1. 

Fourth Step: Calculation of the outer boundary of the plate. 

The boundary condition for co at the outer edge of the plate is 

co - n/3 - 1.0U72. In this example the value of co at y » 1.1 is greater 

that n/3. 

In extrapolation procedure is used to obtain the outer boundary. 

The equation for this extrapolation is based on Taylor's expansion 

expressed in terras of differences. 

, n(n-l)    .2 
\"\+n*\ + ~2 A    \ 

where (2.28) 

H " Vl " \ > 6\ * V2 " 2cW + V 

The value of "n" is 2^. n^3. 

A pictorial representation is given in figure 7b. All the quantities 

of the above equation are known except n. The determination of n 

gives sufficient information to obtain the outer boundary of the plate. 

Reorganization of formula (2.28) gives this quadratic equation for n. 

0 •n2 <<w - 2Vi * V + n (- \*2+ uVi - V -2 K - V 
(2.29) 

The quantity ax is 1.0U72. In this example, the solution of (2.29) 

is n • 2.558. The formula for the outer boundary of the plate is 

T - yb - yk + n A y. (2.30) 

In this example y - 0.8, Ay - 0.1, and n • 2.558; therefore, T is 

I - 1.0558. Equation (2.28) is reorganized and written in terns of a. 

,.*- • *<S»rt« 
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\'\+T (V2 - 
2Vi * V * I (" \*2 * 

h\ - 3V (2'31) 

In (2.31) all the quantities are known except a,j thus the value of 

"a" at the outer boundary of the plate can be found with formula (2.31)« 

Table III gives the numerical results of this example while figure 8 

is the graphical presentation. With the use of (2.13), (2.ill), and 

(2.19), equations (2.1) are expressed as 

.2 
ir--f yEJr "in (.-it/6) 

(2.32) 

ae 3 3 T 3in (a> + n/6) » 

and (2.U) as 

M (1 - 0.2a )a 

If? pb* cos (00 • */6), 

(2.33) 

M . (1 - 0.2a )a  v2    ,    /,-> 
fL - - g  *  pb co3 (co - n/6; 9      75 r 
From the results of the solution of (2.32) for a_, the deflection 

of the mean surface of the plate, w(r), is calculated by a numerical 

integration of (2.3U), the transformed equation I of Table I. 

'<») " I rofl dr  where v,. •,  • 0. (2.3U) 

The actual calculations for o_ and w(r) are performed in Chapter 6 

where the different approximate methods are compared. 
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TABLE II 

y CO' CO - a' a 

0 0 0 0 .5 

o.o5 0.02U5 0.0006 0.0U28 O.U989 

0.10 o.o5oi 0.0025 0.085U O.U957 

o.i5 0.0766 o.oo56 0.1276 O.U90ii 

0.20 o.ioU5 0.0102 0.1692 O.U830 

0.25 0.1353 0.0161 0.2099 O.U735 

0.30 0.1672 0.0238 

TABLE III 

0.2U97 O.I4620 

! 
? 

J 

! 

y 

0.0 

0.1 

0.2 

0.3 

o.U 

0.5 

0.6 

0.7 

0.8 

0.9 

0.10 

1.0558 

CO' 

0 

0.0501 

o.ioU5 

0.1672 

0.2U8U 

0.3678 

0.5377 

O.8038 

1.3603 

2.U360 

U.5692 

CO 

0 

0.0025 

0.0102 

0.0238 

0.01*52 

0.07U3 

0.1197 

0.18U1* 

0.2859 

O.U733 

0.8023 

1.0U72 

- a' 

0 

0.0851* 

0.1692 

0.2U97 

0.3257 

0.3952 

O.U587 

0.5103 

0.5U12 

0.5207 

0.3680 

a 

0.5 

O.U957 

O.U830 

0.1*620 

0.1*331 

0.3970 

0.35U5 

0.3055 

0.2528 

0.1981* 

0.1517 

0.1290 

< 
) 

I 
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2.U Evaluation of the Method of Sokolovsky. 

The method of Sokolovsky pives a procedure for obtaininr a numerical 

solution of equations II, III, and IV of Table I, This solution is 

obtained by the simultaneous integration of the two non-linear first 

order differential equations (2.8) and (2.9). The actual numerical 

integration of these equations is greatly simplified by assuming 

expression (2.11) for a stress-strain relation. Expression (2.11) 

is a parabolic approximation for the actual stress-strain relation- 

ship. The accuracy of the results givsn in figure 8 and 9 depends 

upon the accuracy of this assumption.. Figure 9 is a rraph showing 

the dependence of co and "a* upon the radius of the plate, r, when 

the initial values of a - 0.25, a • 0.50 and a - 1.00 are used to 

calculate the example of section 2.2. 

A check on the accuracy of each step of the numerical integration 

procedure is riven by fonula (2.23). Though the error of each step 

is small, the error of the whole procedure is cumulative. Equations 

(2.32) and (2.33) show that the cumulative error in determining I 

alters the value of the iioraents and curvatures throughout the plate. 

When the same size increment is used, the behavior of the integration 

process is such that the error is greater for smaller initial "a". 

Thus, this method gives better results for plates which are loaded 

near to the limiting strain condition, or for initial "a" approxi- 

mately one. 

The method of this chapter is an inverse method. The variable 

•a", which i3 a measure of the strain condition of the piste, is riven 

,»>, >•** <-• • 
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an initial value, and th^ boundary condition (2.19) determines the 

parameter 7^ equal to X-'  hpb /D. The parameter T determines the 

physical properties of the plate and the permissible load. Any one of 

the factors in I can be adjusted to give the correct boundary value of 

T. But if a plate of a given material and specific dimensions has a 

definite pressure applied, I is determined. Thus, a saries of calcu- 

lations are necessary to adjust the initial value of "a* so that the 

correct value of X occurs at the boundary of the plate. 

The calculation of an actual examole, for any given initial con- 

ditions, can be performed within a day. This calculation gives co 

and "a" as a function of y in the form of a table or a graph. Thus, 

the bending moments, curvatures, and deflections of the plate, given 

by (2.32), (2.33), and (2.3U), cannot be expressed analytically. A 

complete description of the physical behavior of the plate can be 

found to any desired accuracy when sufficiently small increments are 

used. But, this method is too lengthy for quick estimates of the 

moment**, curvatures, or displacements for plates with prescribed 

dimensions.  In the chapters which follow several approximate methods 

are described which can provide these quick estimates. The last chapter 

of this thesis presents a comparison of the results of these various 

methods. 
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CHAPTER III 

THE ITERATION METHOD 

3.1 The Mathematical Development of the Method. 

The paper by Ilyushir (9) develops an approximate method for the 

solution of oroblems with plastic stress-strain relations. This method 

leads to differential equations which can be solved by an iteration 

procedure, and is used here to obtain an approximate solution for the 

problem of the bendinr of a circular plate. 

A second order ordinary differential equation is obtained by 

the substitution of formulae II and 17, into III and V of Table I, 

d afl   daQ 

dr 

(3.1) 

where 

oo 3X h"* I « /flcOe       da 

2 
n 

The iteration method of Ilyushin is now applied to equation (3.1). 

Equation (3.1) is reorganized into 

dr 
•   3 dr 

f rp(r 

-r 
)dr 

A dB , 
or 

^9 
or" •?«•> 

;^f f2£i* *-r:^ KW9 • X^-G^H* 
n 

(3.2) 

—ar      "f15""   \i 3?      ? l?)*    °- 
where 

3) 

Qw - i   (   rp(r)dr. (1.5) r     r    ' 

25 
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The terms on the rirht iand side of (3.3) are separated into 

Ve - Qr, (3.U) 

-»£E V"D/a? I»(*^»K> 

and 

B 
d*g) 

*? Tpj- (3.6) 

The expression on the left hand side of (3«3) is encountered in the 

solution for the elastic bending of a circular plate. When the stress- 

strain relation ic linear, the quantity B, given by (3.2) is zero. The 

linear formula for a circular Dlate is 

d [~1 d , 2. 71    Ve 
•|_Fdr-(rae2l "-D-- 

d 
3? 

due to the non-linear stress strain relation, can be evaluated in terra 

of an estimated oQ as a function of r. An approximate solution for 

aa  is then found by solvinp (3.6) with the shear V and the estimated 
y e 

pseudo-shear V • The approximate solution of this section will not 

be found directly from (3.3), but a convenient form suitable for an 

iteration procedure is derived from (3.3) by using a Green's Function. 

The example of a simply supported plate is used to demonstrate this 

method. 

The boundary conditions for a simply supported plate are: 

a). At the center of the plate 

r - 0, Mr - MQ, <x9 is finite (3.7) 

d7|_FdT(r VI ""D-- 
j 

From (3.U) and (3»5), equation (3.3) can be rewritten as 

The quantity V , which is interpreted as a psei'do—3hearinr force 
- 

i 
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b).    At the outer edre of the plate 

r-b, Hr-0, rd-i^oe-0. (3.8) 

Expressions (3.7) and (3«8) ars derived iy substituting the given 

values of the .'or.ents into for.-rulae III, Table I. 

Equation (3-3) will be expressed in an integral form from which 

Op can be found by integration for any arbitrary shear force. For 

this integral representation, a solution, satisfying the boundary 

conditions (3.7) and (3.8), is required for 

S?[l  5F"SJ    --6(*> <>•« j 
where 

6 (6 ) • 0, for 0&r«^£ , $*r & b, 

and at r -€ , 6 (£ ) increases ST d - -r— (r o ) one unit. The first 

integration of (3.9) yields 1 

ifc(^)-«i      ""9 

The second integration of (3.9) yields 

C        C 
1  .    2 

(3.10) 

a e"T + T       0-r<5 (3«n) 
r 

(C,  - 1) c 
^    •   -\    J«r*b. (3.12) a    • 

*9 The boundary conditions   (3.7) and  (3.8) and the condition that af 

is continuous at r • J determine the three constants C  , C  , and C  . 
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These constants are 

1 

1-1 3 * (4-)2, C2 - o, C - 4!, 

which upon substitution into (3.11) and (3.12) deter.Tone the solution 

for aQ  as 

*9 0 £ r < 

(3.13) 

-0  "5- P-TT'   — r 'I       f'r *b 

The particular solution (3.13) is used to obtain the effect of 

an arbitrarily distributed shearing force, V(J ). The magnitude of 

the incremental shearing force acting on the area d$ at r •= J is 

e (y)Hyidj. 

This shearing force produces an incremental change in o0 of 

Due to the linearity of equation (3.9), the effects of the incre- 

mental shearing forces can be integrated to form the total increase 

in aft caused by the distributed shearing force V(^f). This increase 

is 

xe( r)-)b^>2^?- ri<4->2 ^*? 

fW'J (3.1U) 
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i 
The integral form cf equation (3.3) is obtained when the ex-ressions 

(3.U) and (3.5) are sub?tituted into (3.1b) fcr the arbitrary shearing 

force V(jf). 

v(5) V • V . 
e   p 

The result of the above procedure, after reorganization and several 

integrations by parts to eliminate the derivatives of B, is 

o o r 

The form of this equation ensures the satisfaction of the boundary 

conditions for the simply suDportad plate. Boundary conditions (3.7) 

and (3.8) are applied in the formulation of the Green's Function which 

determines o_ for arbitrarily distributed shearing forces. For a 

plate subjected to different boundary conditions, equations (3.7) 

and (3.8) are replaced by new equations. The subsequent forailae 

are altered, but the procedure remains the same. 

Rrpression (3.1$) is the desired integral form of (3.3) for 

the application of the iteration method. The explanation of this 

iteration process is explained in the next section by solving the 

example problem. 



29 

The integral form cf equation (3.3) is obtained vhen the ex-ressions 

(3.U) and (3.5) are substituted into (3.1U) for the arbitrary shearing 

force V(J). 

V(f ) - V • V . 
•J '   e   p 

The result of the above procedure, after reorganization and several 

integrations by parts to eliminate the derivatives of B, is 

o o r 

•I f £<"9*4-dy>M5 *f f £«**^5>"J     (3.i5) 

1 Cb d°9 Bd£ 

The form of this equation ensures the satisfaction of the boundary 

conditions for the simply suoported plate. Boundary conditions (3.7) 

and (3.8) are applied in the forrailation of the Green'3 Function which 

determines o_ for arbitrarily distributed shearing forces. For a 

plate subjected to different boundary conditions, equations (3.7) 

and (3«8) are replaced by new equations. The subsequent formulae 

are altered, but the procedure remains the same. 

Repression (3.15) is the desired integral form of (3.3) for 

the application of the iteration method. The explanation of this 

iteration process is explained in the next section by solving the 

example problem. 

... •  — 
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3.2 The Numerical Ucample. 

The example oroblem of section 2.2 is used to illustrate the 

iteration orocess. In this example the load is a constant. 

p(r) - p 

Q - 1/r j prdr - pr/2 (3.16) 

A parabolic stress-strain relation is assumed which determines the 

quantity B from (3.2) as 

B - 0.6 Xh' 
daQ 2 

A ae
2 * 3 ag (r ^) • (r ^) 

da€ 
xr> (3.17) 

With the substitution of (3.16) into equation (3.15), o_ is 

da. 

(3.18) 

or r 

The iteration procedure is now applied to equation (3.18). 

a). The elastic solution. 

The first step of the iteration process is to assume that X • 0. 

This is equivalent to assuming that B is zero or that the pseudo- 

shearing force V , equation (3.5), is not present. The aa  calculated 
P *» 

from this assumption is criven by a plate with an elastic stress-strain 

relation as 

2 

4" - & 0 - ^>2] > (3.19) 

which is obtained by evaluating (3*18) when B - 0. 
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b).    First a--roximation for oQ. 

The first approximation for a    i3 found by integrating.   (3«l9) 

where  (3.18) is evaluated by substituting (3.17) for B, and a 

from fornula  (3.19) for oQ.    We find 

(e) 
9 

a(l) ae(r) 
e 

89 * 

T2 - X1/2 hpb2/D 

(3.20) 

fx - 0.2327 - 0.2871(|)
2 • 0.176U(^)U - O.OUlR9(|)6. 

The dimensionless parameter Y is tie same parameter encountered 

in section (2.2). This step is equivalent to approximating the 

pseudo-shearing force V , formula (3.5), in terms of the elastic 

effects on tt-. The apparent shearinr force V , due to the plastic 
9 p 

behavior of the material, increases <xQ. 

c). The second approximation for a_. 

The value fc t^  obtained in expression (3.20) can be used to 

evaluate B and aft in (3.17) and (3.18) as functions of r. Then 

expression (3*18) is integrated for the second approximation for 

2 

4" • <4" • %m |A * A * °»«] (3.21) 

f2 - O.Oli55 - 0.0931 (|)2 • 0.113 (|)U - 0.0793 (|)6 * 0.0302 (£)8 

- o.oohft (£)10. 

In this approximation another estimation for the apparent sheering; 

force V is made by using a rectified o_. The increase in the estimated 
p       J 0 

a^ ' over a^ ' fives a greater value for a^ ' than ai . The term 
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0^(1) denotes terns containing, the twelfth and hirher powers of Y. 

These terms are altered on further approximations for ofl; yet they 

are not needed for the calculation of the twelfth power terns in I 

in the next approximation. 

d). The n  approxi-ation for o . 

For the n  approximation of a , Op    ±3  used to evaluate the 

intepral (3.18). The form of this solution is 

^•^^[gA'Vl)"]. (3.22) 
The term Iunf is the additional correction for an.    This tern is not n 6 

altered in further approximations. The terms of hipher order than 

Un in the parameter T can be neglected and do not effect the next 

approximation for the term containing ~i        . The elimination of the 

terms 0  i (Y) in each approximation greatly decreases the numerical 

work. 

e). The check. 

For each approximation a new function, f , is obtained. This 

function is the only term which has the parameter Y to the Un  power. 

For the computations to be correct, all the functions, f. , must 

satisfy the boundary conditions. After each approximation the newly 

acquired function f should be substituted into expression (3.8) 
n 

to check the computations. 

The functions f.. and f- are evaluated in Table IV for various 

~ (2* 
ratios of r/b. These values can be used to <~a1elate a^ ' for various 

loads and values of the parameter Y. 
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TABLE IV 

Evaluation of functions appearing in 

the Iteration Method.  (Formula 3.21) 

r/b 7 - 3(r/b)2 fi &/b>3 f2 fr/b)^] 

0 7.00 0.233 O.OU55 

0.1 6.97 0.230 0.0W16 

0.2 6.88 0.222 0.0l;20 

0.3 6.73 0.208 0.0380 

o.U 6.52 0.191 0.0332 

0.5 6.25 0.171 0.0282 

0.6 5.92 o.i5o 0.023b 

0.7 5.53 0.129 0.0193 

0.8 5.08 0.110 0.0160 

0.9 U.57 0.0936 0.0135 

1.0 U.oo 0.0801 0.0118 

3.3 Evaluation of the Method. 

The iteration method provides a solution for the plastic 

bending of a circular plate in terns of the dimensionless parameter X 

and functions of r. In section 2.2 values of T are calculated for 
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various degrees of plastic yielding. For a condition of complete 

plastic yielding at the center of the plate T - 1.368. Therefore, 

the ranpe of I is 0 — T *-1.386. The accuracy of this method for a 

given number of aoproximations depends upon the converrence of f 

and the value of T. 

With the use of Table IV, an estimate of the :iaximum correction 

for afl between a firs I and second approximation is about 7 percent. 

This estimate is obtained from 

A 
percent correction -  —* 1— 100 • (3.23) 

7 - 3(£r • l\ 

The error involved in the two term approximation should be less than 

this value. 

Bach iteration increases the estimated value of aQi  which makes 

the series of the apciroximate pseudo shearing force V   a monotonously 

increasing series. Riysical considerations make it plausible that the 

correct V is the limit of this series or that the iteration method 
P 

is convergent. Panferov (5) treats the problen of convergence for 

this method mathematically. 

The exact solution for a_ in terms of the infinite series obtained 

by the iteration procedure is 

S • Ero[7 - 3
<E>

2
 • jg K] • "-2,*> 

The deviation from the n  approximation for the o^  given by (3.22) 

and the exact a. is 



: 

35 

ae " «<
n) - g£ & J\. 0.25) 

(n) 
Expression (3.25) shows that the sequence a_ - aj:  converges more 

slowly the greater the parameter I. This result follows frnm the 

consideration that the preater the value of the parameter T, which 

indicates the extent of plastic straining, the greater is the difference 

(e) 
aQ - al    . Thus, a greater number of approximations are needed to 

correct the larger initial error for large values of the parameter I. 

When the desired accuracy must be preater than that given by 

a two term approximation, Sokolovsky's Method is preferable. The 

numerical work for higher term approximations of the iteration method 

is excessive. This method has advantapes over Sokolovsky's Method 

because the approximations involve only polynomials in r which can 

be integrated or differentiated to determine the deflection and a . 

The mathematical approach of the iteration aethod is not as direct as 

Sokolovsky's Method, but the actual calculations are shorter for any 

problem with a given load distribution and boundary conditions when 

the two term approximation is used. Only one set of calculations is 

needed for any outer radius of the plate or magnitude of the para- 

meter determining the load distribution. 
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CHAPTER IV 

THE APPLICATION OF POTENTIAL ENERGY 

u.l Introduction to the Minimum Potential Energy Method. 

When energy methods or variational principles are used, the 

variational principle should be thourht of as the basic law govern- 

ing the behavior of the system. The behavior of the system is de- 

termined by a definite variational procedure upon the energy or equiva- 

lent quantity of the complete system. This method of approach differs 

from the procedure of the previous chapters where the behavior of 

every element is analyzed. Both methods are equivalent, but the 

assumed fundamental concepts are different. 

The variational principle used in this c'.apter is the principle 

of minimum potential energy. Hyushin (9) and Phillips (10) give a 

general development of the principle of minimum potential energy. 

Greenberg (16) treats the subject of variational methods for the theory 

of plastic flow and the theory of plastic deformations. His report 

gives a thorough development and includes the original references for 

the various variational principles. 

The next section directly approaches the problem of the deformation 

of a circular plate usinp the minimum potential energy method. The 

problem is expressed in terms of the Moments, curvatures, and deflections 

of the plate. 

U.2 Formulation of the Minimum Potential Energy Method for the Bending 

of Circular Plates. 

36 
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For the moment-curvature relations IV of Table I, the strain 

energy per unit of a plate is expressed in terms of A as 

W - f    EO-Zii) dA* . (U.l) 
o 

The potential energy for the plate is 

T    /-b h « 2tt J  (W - pw) rdr. (U.2) 
1    o 

For the variational principle of this section the following definitions 

are necessary: 

l). Admissible displacements are displacements which agree 

with the prescribed boundary conditions. 

2). Admissible curvatures are curvatures which satisfy equations 

I and II of Table I throughout the plate, where the w in equation I 

of Table I is an admissible displacement. 

3). Admissible moments are moments derived from admissible 

curvatures by equations IV of Table I. The load p is a given quantity 

which is not varied. From equations (2.2) for A and (li.l) for W, we 

find that ¥ can be expressed in terms of only the admissible curvatures 

and displacements. 

The principle of minimum potential energy states that the admissible 

curvatures and displacements which render $ a minimum yield admissible 

momenta that satisfy the equilibrium condition III of Table I. Thus, 

these curvatures are a solution for the bending of a circular Dlate 

which satisfy equations I, II, III, and IV of Table I. The proof of 

this principle follows: 
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A necessary condition for $ to be a minimum is that the first 

variation of $ iy zero for all admissible curvatures and displace- 

ments. Hence, 

r1 

6£ - 2n ) Jfi^gi^.S^^- p6w rdr - 0 

(U.3) 

From the moment-curvature relations III of Table I and formula  (2.2), 

the moments are expressed in terras of the curvatures as 

_ D(l - B)    BA2, .       . D(l - B)   a£ 
r 2 55" '    9 2 3oT ' r w 

The substitution of equations (U.U) into (U.3) yields 

(U.U) 

) (Mr5ar • M95aQ - p6w) rdr - 0 (U.5) 

The variations of the displacements and curvatures must satisfy 

equations I and II of Table I: 

6a e 
1 d(Ow) 

6a 

r dr 

d(r6a9) 

r   3r~ 

With the substitution of the following identities 

d(r6aQ) b A> d(rM ) 

o  o 

d(rM ) A> d(rM 
6a„ rdr 

(U.6) 

(U.7) 
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(U.7) • 

f  6w prdr - 5w _f rpdr f  • {* /jf rpdr) [- i ^^jrdr 
o o      'o  o ^ o   ^ *—      -' 

and equations (U.6) into (U.5), we find 

rtfd(rM )       r  ~| 
} [—gj^- " Me 

+ )  rpdrj 6oe rdr - 0 (U.8) 

When expression (U.8) is satisfied for all possible admissible vari- 

ations of o_, the bracketed term must be identically zero. This 

bracketed term is the equilibrium equation IV of Table Ij thus, the 

principle of minimum potential energy is proved. 

U.3 Approximate Methods. 

Two approximate methods are available for the solution of equations 

(U.2) and (U.8). These methods place restrictions upon arbitrary para- 

meters in an assumed form of a solution. The explanation of these two 

methods follows: 

The first method, the Rayleigh-Ritz Method, assumes an approxi- 

mate form of the deflection w with the adjustable parameters C., 

-gciWi(r), (U.9) 

where each w. satisfies the boundary condition imposed upon the plate. 

An approximation for the potential energy of the plate is found by 

using expression (U.9) to evaluate the integral (U.2). 

I - ( £(w) - p(r)w[ rdr (U.10) 
o 

| 
-i-- 
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For the calculation of W(w), the curvatures are obtained with equations 

I and II of Table I. The parameters C are varied to give a stationary 

value of the integral (U.10) by setting its partial derivative with 

respect to each of the Darameters equal to zero. 

8l/3Ci - 0     i - 1, ..., n (U.ll) 

Equations (U.ll) are n equations which deter.Tiine the n unknown para- 

meters C . The extreraum of I is found for the restricted set of 

admissible displacements w. Other functions not contained in the 

above set may yield a lower potential energy; therefore, this method 

only gives an approximation for the strain condition of the plate. 

The second method, Galerkin's Method, uses equation (U.8) to 

make an approximation for oQ. This method assumes an approximate 

ofl with the parameters C as 

°Q- C, a^(r). 5 ~:i ~ei (U.12) 

> 

Bach CQ. should satisfy the boundary conditions of the plate.    The 

C. are determined by evaluating 

f fd KM 
(U.13) 

ft 
- MQ (ofl) • j    rp(r)dr   a^rdr - 0; i - 1,  ..., n 

J 

Equations (U.13) are n equations which determine the parameters C.. 

Here, as in the Rayleigh-Ritz Method, only a restricted set of admissible 

curvatures approximate afl; therefore, the true strain condition is 

not obtained. 

atropn *>»• h 
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Hotter (12) proves the equivalence of the above two methods. 

Fox (13) (chap. 7) suggests what accuracy is obtainable by a suitable 

choice of assumed functions. A general explanation of these and 

other approximate methods is given by Sokolnikoff (ill) (chap. $). 

The next section demonstrates the use of Galerkin's Method. 

U.li The Numerical Example. 

The numerical approximation using equation (U.13) with Galerkin's 

Method is demonstrated by solving the example used in sections 2.2 

and 3.2. This example is a simply supported plate with a uniform 

load p and a parabolic curvature-moment relation. The determination 

of the bracketed terra of formula (U.13) as a function of the assumed 

oft is performed in section 3.1. Therefore, we have 

& Or 5f - B(r' th . ,r % "37 "or' 

dB / 
"r3F(r 

dr      "        dr 

where 

B 
daQ     do 2~[ 

- 0.6Xh2  3 oe
2 • 3Sg  (r —i) + (r -^|) J . 

The boundary conditions are 

a). At the center of the plate, r - 0, 

M - M„, and, ort. is finite 
r   6'   ' Oi 

b). At the outer boundary of the plate, r - b, 

do Oi Hr-°'rlf + 'Oi 0. 

(U.iU) 

n. 

(U.15) 

(U.16) 
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2 
Polynomials in r are selected as the approximatinp functions 

aft.. The polynomial for a one tarn anoroxination is parabolic. From 

the boundary conditions Jt.l6), a^, is determined as 

oel - 7 - 3 (r/b)
2 (U.17) 

The form of the elastic solution suggests that oft be written as 

aQ  - C Eg_ [7 - 3 (rA)
2] , (U.18) 

where C is the adjustable parameter. 

An algebraic equation for C is found by evaluating equations (U.lU) 

and (U.15) with expression (U.18). This equation is 

A;3 - 0.01925 c • o.oooUoi - o, (U.19) 

where Tr  • X   hpb /D,    The parameter T first appeared in section 

2.2 as an indication of the degree of plastic straining. 

Equation (U.19) can be solved exactly, but the value of C for a 

given T is found with less effort by approximate methods. The follow- 

ing method of Newton gives accurate results with one approximation. 

Formula (U.19) is expressed as a function of C. 

f(C) - I^C3 - 0.01925C+ 0.000U01 (U.20) 

The (n • l)th estimate of C is denoted in terms of the n  approximation 

plus a correction factor A • 

Cn*l - °n + An (U-2l) 

Thia correction factor is found with the value of the function and 

its derivative at C . 
n 
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K ' - f <CJ i 

The conciliation of   (li.2C),   (ii«21), arxs  (h.22) yield* 

Y1^3 - 0.0OO200S 
C        -        n 

"a*1      1.5 A2 - 0.00962 n 

The values in Tmble V wers determined with for-wila ()i.2^), 

7alue of the Multiplyinr Factor for 

a One Term Strain-Kn^r^y Approximation 

TA3LK V 

<.'..: 1* > 

(Ji.3t) 

T C 

0 .02083 

0.775 0.02102 

1.056 0.021ii6 

1.368 0.02305 

For the two term approximation, t.hi necon»l polynomial a^i whlnh 

aatisfios the boundary condtions (la. 16), Is 

agz  - ll(r/b)
2 - 7<r/b)U. 

The two term approximation for «fl ia 

01.710 

V *r 'ci E- 3(r/bu •c? [11(r/b)? - 7(r/,,3 (li.?5) 

",s*rt»- ^-* ;-\   .';•'*•  • 
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The second term, o^, alters the va'ue of t-e ^aram^ter C found in 

the one tern approximation. For the two torm esti ate of aQ,  the 

numerical work increases rreatly. The form of the alpebraic equations 

for C. and C found by using expressions (h.lli) and (U.25) is 

A11C13 * A12C2C12 * A13C22C1 + AHiC23 * Vl + ¥2 * A17 " ° 

A21C13 + A22C2C12 + A23C22C1 + A2UC23 * Vl * A26C2 * A27 " ° 

(h.26) 

The a  are constants which contain the parameter T. For the deter- 

mination of C and C with a riven value of T, two simultaneous third 

degree equations must be solved. 

k»5    Evaluation of the Method. 

A one term approximation by the minimum potential energy method 

for a Dlastically bent plate adiusts the numerical coefficient of the 

elastic solution. For the elastic plate the value of C in expression 

(h.18) is C - 1/U8 - 0.02083. Due to the plastic behavior of the 

material, the circumferential curvature increases a maximum of 10.6 

percent. The one term approximation rives a rapid method for directly 

obtaining a ;iagnitude correction factor for the quantities connected 

with the curvature, but it does not show ho* the form of the plate is 

altered due to the plastic behavior of the material. 

The two term approximation makes a finer adjustment of the magni- 

tude factor and also gives some information regarding variations of 

the curvature with the radius. Besides the increased numerical work 

necessary to obtain an expression of the form (U.26), two simultaneous 

--*>'. 
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third degree algebraic equations nru3t be solved for each particular 

example. The lack of a numerical checkinp procedure also presents a 

strong objection to higher term approximations by potential energy 

methods. Further comparison of this method with the nethods of the 

previous chapter3 is riven in Chapter VI. 



CHAPTER V 

THE APPLICATION OF COMPLEMENTARY POTENTIAL ENERGY 

5.1 Formulation of the Minimum Complementary Potential Energy Method 

for the Bending of Circular Plates. 

The material in Chapter IV introduces the variational procedure. 

The variational principle for this chapter is the principle of minimum 

complementary potential enerpy. This method is applicable when the 

moment-curvature relations state the curvatures in terms of the 

moments. Thus, an inversion of equations IV of Table I is necessary. 

For this inversion a useful quantity M, similar in form to the 

stress invariant S, is defined as 

M
2
 - j (>£ - «r

Me * *fe2)- (5a> 

The substitution of equations IV of Table I into (5.1) yields the 

relation 

„ . EO_zJi A (5.2) 

between A and M, the quantity A can be expressed in ter;^s of M as 

(5.3) A.^(l •B«), 

where 

B' « fi Pn (f)
2n M20. 

n-1 
(5.U) 

The B '8 are constants determined by substituting equations (5.3) 
n 

and (5.ii) into IV and V of Table I and equating the coefficients of 

like Dowers of M. The first two coefficients are 

U6 
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Equations IV of Tcble I, (5.1), (5.2), and (5.3) are solved for the 

curvatures in terns of the nornents: 

2(1 • B') dM2 ar E  W * 
T 

(5.5) 

2(1 + B') dM2 aG " -*-D   oT£ ' 

These are the inverted moment-curvature relations. 

For the moment-curvature relations (5«5), the complementary 

potential energy per unit area of the plate is expressed in terms 

of M as 

.M2 

".-[     —J ilL^ldK2. (5.6) 

The complementary potential energy for the plate is 

At 
$ c - 2« (    (*. - wp) rdr. (5.7) 

For the variational procedure of this section the following defi- 

nitions are necessary: 

1). Admissible moments are mo ients which satisfy equation III 

of Table I and the boundary conditions for the moments. 

2). Admissible curvatures are curvatures derived from ad/nissible 

moments and equations (5*5). 

3). Admissible displacements are displacements calculated from 

admissible curvatures and equations I of Table I. Thus, the comple- 

mentary potential energy $ can be expressed in terms of only admissible 

•. • «p»-«*-. — •• 
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moments and the riven loa:is. 

The principle of mini-aim complementary potential enerpy states 

that the admissible moments which render $ a minimum, yield admissible 

curvatures that satisfy equation II of Table I. Thus, the above 

procedure pives the solution for the bending of a circular plate, or 

moments and curvatures which satisfy equations I, II, III, IV of 

Table I. The proof of the principle of minimum complementary potential 

enerpy follows: 

A necessary condition for © to be a minimum is that the first 

variation of 6 is zero for all admissible mo ients. Because the loads rc 

are prescribed on the surface of the plate, the first variation of 

L *> 

5$c 2n {* 12(1 + B') 3M2 ,„ A 2(1 + B') 3M
2 

J    —D—   m~ 3Mr + —D—  3HT o L 3H~  r 
r 3J£6"e 

rdr - 0. 

The substitution of equations (5.5) into (5.8) yields 

|  (or6Hr • OQS^) rdr - 0. 

(5.8) 

(5.9) 

The variations of the admissible moments must satisfy equation III 

of Table I: 

d(r5M ) 
.    r -6MQ. dr 9 

With the substitution of the following identity 

A> d(r6M ) , 
)     ro«      j_ r      dr   - ro„5H *0"~dl 

o-r 

e d-i b d(ro-) 
-j-^-   6M    rdr dr r 

d(ra ) 
• w      6H rdr dr r 

(5.io) 

(5.11) 

!• 
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and equation (5.10) into (5.9) we find 

U' a - 
r 

d(raQ) 
6M rdr » 0. 

r 
(5.12) 

When equation (5.12) is satisfied for all possible admissible variations 

of M^, the bracketed tern must be identically zero. Thus, equation II 

of Table I is satisfied and the principle of minimum complementary 

energ\ is rroved. 

5.2 Approximate Methods. 

The methods of section h.3 can be used to evaluate approximately 

the integrals (5.7) and (5.12). The integral (5.7) is handled by 

the Ravleirh-Ritz Method with the simplification 

5 j\ rdr - 0, (5.13) 

because the pressure p(r) is prescribed on the surfpee of the plate 

and does not affect the variation of 5 . The assumed radial moment 
*c 

M is 
r 

7  - 5~TC4M . r    fat  iri (r) (5.1b) 

where the M , (r) satisfy the boundary conditions and the C. a~e the 

adjustable parameters. The circumferential moment WL is 

d(rM ) 

% - -ar~+ J rpdr» (5.15) 

which assures the satisfaction of the equilibrium conditions for 

admissible moments. The vanishing of the partial derivatives with 

respect to the n parameters C. of expression (5.13) evaluated in 

-—t 

I 
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terms of (5.1h) and (5«l5) determines f.ie following n equations for 

the n arbitrary parameters C : 

5c~ \  w 
J  c 

rdr =0.  i - 1, (5.16) 

Equations (5.16) ensure an extremium of the complementary potential 

energy for admissible moment variations of the restricted set (5.1k); 

therefore, only an approximate solution is obtained. 

Equation (5.12) is approximated by Galerkin's Method. Galerkin's 

Method gives n equations to determine the C of (5.1U) as 

ISM) ^ -^ \M ,rdr - 0 
J  ri (5.17) 

i * 1, «•«» n 

n «r <V " dr 

The curvatures in equations (5.17) are calculated in terms of M with 
r 

the moment-curvature relations (5.5) and expressions (5.1b) and (5.15). 

The result of this calculation is 

rb  r       . d'H     dM ,r 
\       (1 • B' )(r —j- *  3r -£ * rS + I )    rpdr) 
o dr o 

.     dB 
or 

• , dMr \      f ~] 
~  (r "df * T + J    rpdr)J "ri^1" 

(5.18) 

1, n. 

These n equations are enough to determine the n parameters C.. 

5.3 The Numerical Example. 

The solution of the example problem of sections 2.2, 3.2 and U.li 

is now approximated by the use of the Minimum Complementary Potential 

Energy Method. Formula (5.18) is used for Galerkin's approximation 

:,..-.,^«. ••  •• —-••—- 
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method. This numerical example has a parabolic .-ncment-curvature 

curve when the roment invariant, M, is expressed in tens of the curva- 

ture invariant, A. The factor B' of the inverse relationship, becomes 

the infinite series 

a/2. M 2       x^/Ku h 

B« - ^(L^M) • 17.28 (^jM) • ... (5.19) 

Expression (5.19) is a specialization of (5.U) when only X, is considered. 

An approximation to expression (5.19) of the form 

B« - 2.U (^p2) (5.20) 

is made to simplify the calculations. 

One Justification of this estimate is that the actual moment- 

curvature relationship of M to A is a parabolic approximationj there- 

fore, an approximation could be made by a parabola of the fom (5.20). 

The factor X can be adjusted to give as much accuracy as possible for 

the range of M to be considered. The adequacy of expression (5.20) as 

a representation of (5.19) is discussed later. 

The one term polynomial approximation is suggested by the form 

of the elastic solution of the simply supported circular plate with 

constant load p. 

Hr - Cpb
2 [_1 - (r/b)^J  . (5.21) 

Here, C is the adjustable parameter and 

Mrl - 1 - (r/b)
2. (5.22) 

The evaluation of expression (5.18) with (5.1), (5.15), (5.20), (5.21) 

and (5.22) yields the cubic equation for C 

N^»-.Ut ^- -<•«• -**-*•• 
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T* (C3 - 0.7366 C2 + 0.1920 C - 0.0167U) 

• 0.5952 C - 0.1302 - 0 , (5.23) 

where Jr  - \ ' hpb /D. The parameter Y first appeared in section 

2.2 as an indication of the degree of plastic straining. 

By the aporoximation method of Newton, which is explained in 

section U.U, the successive approximations for C are obtained from 

T^(c 3 -0.3683 C2 • 0.00837) • 0.0651 
C   - -r—2 «  .        (5.2u) 
n x  r(1.5 C * - 0.7366 C • 0.0960) • 0.2976 

n 

Formula (5.2k) is used to determine the values of C in Table VI. 

Expression (5.20) is now compared with (5.19). The quantity 

(X^hH/B)2  is evalutated with (5.1) and (5.21) as 

• | Ur/b?  - 5(rA)^[ • £ (p/b)U f • (5.25) 

Equation (5.25) ha3 its maximum value at r • 0. 

^T^  max " **t* <5'26) 

This parameter indicates the difference between (5.19) and (5.20). 

When I - 1.368, the first three terms of expression (5.19) give a 

value of B' over 70 percent greater than (5.20). Thus for large values 

of T these two expressions are not equivalent. 

For a two terra approximation for H , a similar procedure to that 

of section k*h  can be applied. The same numerical difficulties arise 

and the extra effort involved in the calculations makes the two term 

approximation impractical. 
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Value of the faltiplying Factor for a One Term 

Complementary Strain-Energy Approximation 

TABLE 71 

T c 

0.21875 0 

0.775 0.2185 

1.056 0.2178 

1.368 0.2163 

2.00 0.209U 

5.U Evaluation of the Method. 

For the calculations of section 5.3, the monent-curvature relation 

is given by formulae (5.2) and (5.20). For large values of the oara- 

meter Y, the moment-curvature relation of section (5.3) is not equivalent 

to the relation used for the numerical calculations of the previous 

chapters. Thus, the numerical results of this chapter cannot be compared 

with those of the previous chapters. Also, the parameter Y cannot 

be interpreted In terms of the calculations of Chapter II. With the I and 

C determined by equation (5.23) and the M piven by (5.25), M is a 

monotonously increasing function of Y; thus, I still indicates the 

stress condition in the olate. For the moment-curvature relation 

!- 
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with a B' given by (5.20), the value of I is not restricted, because 

the -noment-curvature relation determined by this B' does not have a 

horizontal tangent. 

The complementary potential energy method and the potential 

energy method give moments and curvatures which bracket the actual 

potential and complementary potential energy of the plate. A discussion 

of this bracketing is found in the report by Greenberg (l6). In this 

work, the bracketing of the potential and complementary ootential energy 

is not obtained because different moment-curvature relations are used 

to calculate the potential and complementary potential energy. 

The elastic solution of a circular plate gives a M where 

C - 7/32 - 0.21875. This elastic coefficient can be compared with the 

values of C in Table VT which consider the plastic moment-curvature 

relation. The one term approximation of section 5.3 makes an adjust- 

ment for the :nagnitude of M but does not show the change in the 

distribution of the moments due to plastic effects. Higher term approxi- 

mations adjust the distribution of the moments but lead to numerical 

difficulties which make them impractical. 



CHAPT3R VI 

CONCLUSION 

6.1 Comparison and Interpretation of Numerical Results. 

The work of the previous chapters develoDS four -.ethods for 

obtaining approximations of the stress and strain condition of a 

plastically bent circular plate. The numerical calculations of Chapter V 

for the "dnimum complementary potential energy -nethod use a no :ent- 

curvature relation different from that of the previous chapters. 

This difference makes a comparison of the numerical results of ChaDter V 

with those of the previous chapters meaningless. Therefore, only the 

numerical results of Chapters II, III, and IV are compared. 

The circumferential curvature, o_, is used as the measure of 

comparison for the various methods. Figure 10 shows aft as calculated 

by the various methods for I • 1.368 and I - 1.056. These cases 

represent a plate which has reached a maximum strain condition at the 

center, T • 1.368, and a plate having only half the maximum permissible 

strain invariant at the center, T • 1.056. The results for Sokolovsky's 

Method are calculated from the data on Figure 9 and formula (2.32). 

The results for the iteration method are obtained with the use of 

Table TV and expression (3.21). The curve for the lini/num potential 

energy method is obtained by using Table V and formula (Ij.l8). The 

iteration method is calculated by using the two correction terms 

f, and f-, while the potential energy method uses a one term approximation. 

: 
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For I - 1.056, the contribution of the f_ term in formula (2,32) 

of the iteration method increases oft by 1 percent. Thus for small Y, 

the one term iteration approximation gives quick, accurate results. 

Actually, this approximation introduces less error for saalx T than 

Sokolovaky'a Hethod when the increments in the numerical integration 

are of the size used in section 2.3. The algebraic work for the 

iteration method is also less than that of the minimum potential energy 

method. 

The plate which has reached the limit of plastic strain at the 

center offers the best indication of the accuracy of the different 

methods. The results for this plate are shown in figure 10 (I - 1.368). 

The values for o_ from Sokolovsky's Method and the iteration method 

compare favorably. The difference in these two curves indicates the 

magnitude of the neglected terms in formula (3.21). If additional 

terras are used in the approximation for a).      in the iteration method, 

this value of ai  would approach the value of aQ  given by Sokolovsky's 

Method. The values of oQ for the minimum -otential energy method lie 

below those of the other methods. When only the first correction term, 

f-, of formula (3.21) is used, the iteration and the minimum potential 

energy method have close numerical agreement. 

The deflection of the mean surface of the plate is calculated by 

using the results of the iteration method in formula (2.3U). The o_ 

from the iteration method is used to calculate w(r) because it is 

expressed in the form of a polynomial which is easily integrated and 

has a good numerical agreement with the aft given by Sokolovsky's Method. 
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The result of the substitution of (3.21) into (2.3u) is 

w(r)" EBP f2*75 " 3.5(r/b)2 • 0.75(r/b)U • & [£.06873 

- 0.1l635(rA)2 • 0.07178(r/b)U - 0.029UO(r/b)6 • 0.0052U(r/b7f 

• I8 [o.01103 - 0.02275(r/b)2 • 0.02328(rA)^ - O.Ol883(r/b)6 

• 0.00991(r/b)8 - 0.00302(rA)10 • C.00038(rAO \ (6.1) 

The values for w(r) in figure 11 are calculated with formula (6.1) and 

give the deflection of a circular plate for T - 1.368, I - 1.056, and 

for the case of linear stress-strain relation in which case Y - 0. 

The increase in the deflection at the center of the plate due to the 

non-linear term in the stress-strain relation for Y - I.368 is about 

13 percent. 

The radial bendinp moment M for Sokolovsky's Method is found by 

substituting the values for "a" and u> of figure 9 into equation (2.33). 

When the a_ given by formula (h.18) is substituted into equation 17 of 

Table I, the M for the potential energy method is 

Hr . &»&£ - (rA)*] fi - 42! [39(r/b)'. . »(,/»* • ulj. 
(6.2) 

In the example of the simply supported plate, the boundary conditions 

on aQ are determined by equation IV of Table I; thus, formula (6.2) 

gives an M which satisfies the boundary condition, M - 0 at r - b. 

In general, for the minimum potential energy method, the admissible 

curvatures must satisfy the boundary conditions, but the derived bending 

moments do not have to satisfy the boundary conditions. Figure 12 
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gives a comparison of the radial bending monent calculated from equations 

(2.33) and (6.2) for the fully strained plate, where Y - 1.368. 

6.2 Remarks on the Theory of Plastic Flew. 

In section l.lt the stress-strain relations of the secant modulus 

theory (the theory of plastic deformations) are formulated. The 

combination of (1.13) and (l.lU) gives 

si - 20 Q - f(«)j e^  i - 1,2,3. (6.3) 

Inverse relations relating the total strains to the stresses are found 

by a orocedure similar to that of section 5.1. These inverse relations 

are of the form 

ei " 5c"(j- * g ^1   V i " 1'2'3' (6*U) 

Expressions (6.3) and (6.U) are valid for the case of loading only. 

They relate the final stress condition to the final strain condition 

of the element independently of the path of loading. 

Recent experimental investigations by Phillips (20) and Morrison 

and Shepard (21) indicate that the plastic behavior of a metal is 

described by the laws of plastic flow. Hill (7) (chap. 2) and Prager 

and Hodge (18) (chap. 1) give a formulation of the theory of plastic 

flow. In what follows we shall consider the case of loading only. 

The theory of plastic flow relates the increments of the strain 

deviation to l). the increments of the stress deviation and 2). the 

stress invariant by 

dei * ^fai + aih^S^ » i " X»2»3- (6«5) 

at* , i*i*»- 
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Thus the total strain deviations are given by the line integrals 

1 
5ff . fM 

Sih(S)dS , i " 1,2,3, (6.6) 

which depend upon the manner of stressing the element. The appear- 

ance of the line integrals in (6.6) makes the inversion of the stress- 

strain relations impossible. Hill (7) (chap. 2) shows how to express 

the increments of the stress deviations in terms of the stresses and 

the increments of the 3train deviations as 

ds± - 2G dei -\ 1 • 2§h(§) \ i - 1,2,3. (6.7) 

Equation (6.7) does not determine the increments of the stress deviations 

in terns of the strains only, but also assumes knowledge of the stress 

condition of the element. 

Because the stress condition of the body must be known to deter^iine 

increments in the stresses for given increments in the strains, a 

solution for the bending of a plate which satisfies assumption c). 

section 1.3, must be a step by step procedure. For this procedure, 

increments in the curvatures determine increments in the strain 

deviations which satisfy assumption c). These strain deviations 

together with the knowledge of the stress condition from the previous 

step, can be used to calculate the increments of the stresses from 

equation (6.7). These stress increments are used to determine incre- 

ments of the bending moments which must satisfy the equilibrium equation 

III of Table I. The numerical work of such a procedure is enoraous. 
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An estimate is now made of the chanpe in the numerical results 

of the previous chapters if the laws of plastic flow were used instead 

of the laws of plastic deformations. For this estimate, figure 13 

is constructed by the procedure similar to that of section 2.1 for 

the construction of figure £b. Then, figure 13 is used as an aid to 

differentiate between the laws of plastic flow and plastic deformations, 

For the construction of figure 13, the strain deviations are 

divided into 

i - 1,2,3, (6.8) 

where e e ia the elastic strain deviation given by 

et
e - Sj/20 i - 1,2,3, (6.9) 

for both (6.U) and (6.5). The plastic strain deviation e p is given 

by 
-  s.g(S) 

1 - 1,2,3, (6.10) 

e    p 

. p - !i-8(s) 
*i   ^T" 

for the theory of plastic deformations, and by 

s.h(S) dS 
de. 10" i " 1,2,3, (6.11) 

for the theory of plastic flow. Because e. is the same for both 

theories, only e.p is compared to determine the difference between the 

theories of plastic deformations and plastic flow. 

In figure 13a, axes (VT e^/2), (-/J e2p/2), and (VJ e^/2) lie 

In the principal stress axes o~ , a~nt  and <7L. The angle u> is determined 

by a vector S, where s has the components s./vT, a./yT, and syVT. 

The vector S lies in the octahedral plane and is equal in magnitude 

to the stress invariant S. 
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The surface shown in figure 13b is a surface of revolution about 

the S axis which deter.^iines the strain hardening characteristics of 

the material. The S axis is perpendicular to the octahedral plane 

described above. For the theory of plastic deformations, the value 

of Ep 

_i_      1/2 
EP - (1/2 r~ e^) (6.12) 

is the radius of the circle formed by the intersection of a plane 

parallel to the octahedral plane and a distance S from the octahedral 

plane. The substitution of equations (6.10) into (6.12) yields 

EP . sggL t (6#13) 

where equation (6.13) determines the curve which generates the strain 

hardening surface. The orthogonal projections of a vector Ep, at the 

angle w in the octahedral plane, on the axes, (>/J ep/2), (VT e„p/2), 

and (VJ ep/2) are the plastic strain deviations given by equations 

(6.10). 

For the theory of plastic flow, expressions (6.11) are used to 

formulate the quantity 

This quantity is the increment in \»he radii of the circles formed by 

the intersections of the planes parallel to the octahedral plane at 

the distances S and S • dS with the strain hardening surface. Equation 

(6.1k)  determines the shape of the curve which generates the strain 

hardening surface. The orthogonal projections of the incremental vector 
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I 3 
A.I   ^/^ 2 '• ^e de , at the anrle co in the octahedral plane, on the 

axes (VJ ep/2), (y^3 ©?p/2), and (VJ e p/2) are the increments 

of plastic strain deviations given by equations (6.11). 

As a simplification, the principal axes are assumed to regain 

fixed throughout loading. This assumption is true for the case of 

circular plates symmetrically loaded. Also, the strain hardening 

surface is assumed the sa.ie for the theory of plastic flow and for the 

theory of plastic deformations. With these assumptions, and if to - const, 

during loading, (increasing s), the same total plastic strain deviations 

are predicted by both of the above theories. But when « changes during 

loading, the value of the total plastic strain deviations given by the 

theory of flow will depend upon how u> changes, while the total plastic 

strain deviations given by the theory of plastic deformations depend 

upon the final value of o>. Thus, for any case of loading of an element 

where the anrle a changes during loading, the values of the total plastic 

strain deviations predicted by the theory of plastic defornations differ 

from those predicted by the theory of plastic flow. However, when the 

total change of a is slight, this difference is small enough to be 

neglected. 

The variable « introduced in section 2.1 was determined by the 

direction of a vector A in the octahedral plane. Because the components 

of A are proportional to the components of E, the vector A has the same 

direction as the vector E. This vector E is parallel to the vector S 

for the laws of plastic deformations; thus, the variable u> used in 

section 2.1 is the same as the above u. An inspection of figure 9 

K.'iTl "BWXIWii*" 
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shows that the chanre in cc is only a few degrees at any given value 

of r/b during the loading of the plate; hence, the moments predicted 

hy the theory of plastic deformations should be very close to those 

predicted hy the theory of plastic flow, but not identical. 

6.3 The Application of the Methods of Chapters III, IV, and V to 

the Bending of Rectangular Plates. 

The small deflection theory of rectangular plates can be treated 

with the methods of Chapters III, IV, and V. A brief outline of the 

application of these methods is now given. Swjda (19) develops the 

kinematic and equilihrium equations. Ilyushin (9) applies the method 

of minimum potential energy and the iteration method to the problem 

of the bending of rectangular plates. 

Some of the notation of the previous chapters is now altered. 

The strains are defined as 

6iJ 
- I (^i/ax1 * ^J Ax1) , i - x,y,z (6.15) 

The kinematic condition that normals to the neutral surface remain 

normal to the neutral surface in the deflected state still holds and 

allows the significant strains to be expressed as 

e  •-zw it     "-zw  : e  • - zw (6.16a) 
xx     xx   yy     yy   xy     xy 

where 

w  - 32w/dx2 : w  - b2v/df   : w  - a2w/dxdy (6.16b) 
xx yy xy 

and w is the deflection of the neutral surface. Equations (6.16b) 

are the kinematic equations which exnresa the quantities, w , w , 
xx' yy' 

and w . in terms of the deflection w. 
xy* 
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In the rectanpular plate theory e , e , and <r are assumed to 
XZ   y'L Z 

be zero. For the following- formulation, the material is assumed 

imcomprsssible, that is 

e  • e  • e  - 0. 
xx   yy   zz (6.17) 

From the above assumptions, the stresses are written in tens of 

the strains as 

0rx - fcG p. - F(B)j (e^ • tj2) 

cyy-Uo[l-F(iJ (e^ • %J2) 

V = 2G & - F<E3 v 
The second strain invariant B is 

(6.18) 

*-ic 2 ttei3'13 2 2 2 e*e+ee     • e      , 
xx yy xx yy       xy * (6.19) 

and as in Chapter II, B can be written in terms of a quantity A as 

E2 - z2A2 (6.20) 

where 

*2 " w~2 • *OT
2 • *Ww * w^r2' <6*21) xx    yy   xx yy  xy 

The function F(E), which expresses the plastic properties of the material, 

is given by the polynomial 

F(B) - B*n 2n.2n 

n-1 5=r n (6.22) 

The definitions of the bending moments 

**-l h ^h ,h 
<r adz    :    M   -   j   <r zdz , M     -   j    T   zdz 

* y   _h   y        *y   -i   xy (6.23) 

A     ••    **«•*-. 
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are combined with equations (6.16), (6.18), and (6.22) to yield 

Mx - - D(l - B) (Wxx • Wyy/2), 

My--D(l-B)  (Wyy * ^2), 

\y - "0(1 " B) wxy/2, 

whera 

D - 8G h3/3 

(6.2U) 

(6.2$) 

-^ 3Xn (hA) 
2n 

The equilbrium equation for a rectangular Dlate is 

d2M 

dr' 

32M d2M 

• 2 -25^• ^f • p<x>y> • °. (6.26) 

where p(x,y) is the distributed load per unit area which acts normal 

to the surface of the plate. Equations (6.16b), (6.2U), and (6.26) 

are the equations which are used to find the solution for the bending 

of a rectangular plate. 

A fornula which can be used for the iteration method is obtained 

by the substitution of equations (6.16) and (6.2U) into (6.26). These 

substitutions yield 

A - I  (pC*,y) • f  ), (6.27) 

where 

A \t2  aS, t£* 
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and 

{? p - D Bl ^w • (w  • v 
*p V XX 

A a
2B 

yy/2) £? + Wxy 
32B , x d2B 

• ^V + wxx/2} 5? 

(6.28) 

p is a pseudo-loading due to the non-linearit.y of the 3tress-3train 

relations. If the iteration method of Chapter III were followed, a 

Green's Function for the elastic plate would be developed so the 

effect of any arbitrary loading on the deflection w could be found by 

evaluating an integral. In order to find this Green's Function, the 

elastic plate problem of a concentrated load acting at any arbitrary 

point on the plate with the given boundary conditions must be solved. 

Such solutions are given in terms of infinite series which make the 

evaluation of p very lengthy. A direct approach, which involves less 

numerical effort, is to first assume B • 0 and directly solve the elastic 

problem 

V> k,  - Pfe'?) (6.29) 

for the given boundary conditions. The w , found above, is then used 

to evaluate p with (6.28). This p is used to obtain a first approxi- 

mation for w with 

*\ * i M*»x) * V* (6,30) 

In general, analytic solutions of (6.29) and (6.30) are difficult to 

find, but relaxation or methods of finite differences can be used to 

get numerical results. The w found above can be used to evaluate a 

new p for a second approximation of w. Judging from the numerical 
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results found in Chapter III, only two iterations should give sufficient 

accuracy. 

The minimum potential energy method of Chapter IV can be used to 

obtain an approximate solution for the bending of a rectangular plate. 

From the combination of (6.21) end (6.2U), we find the moment-curvature 

relations in terms of A as 

M - D(l -B) 32A2 

—T^— 35—  » 
xx 

M -D(l - B) 62A2 

—*T—L  35— » 
yy 

2M 
*y 

-p(i - B) 32A2 

—^""^ *C *y 
(6.31) 

For the moment-curvature relations (6.31), the strain energy per un'.t 

area of the plate is 

,2 

2 
f   m^Jl   dA2. (6.32) 

The potential energy for the plate is 

I - Js) (W - pw)dxdy. (6.33) 

The first variation of $ must be zero for minimum potential energy. When 

equations (6.31) are substituted into 6$ * 0, the result is 

6$ - I) M (-6w ) • 2M (-6w ) • M (-ow) - p6w dxdy - 0    (6.3U) 
w  x   xx     xy   xy    y   yy 

Expression (6.3U) can be put in an alternate form which shows that 

the minimization of the potential enerpy for admissible curvatures 

satisfying (6.l6b) and deflections satisfying the given boundary 

conditions yield moments which fulfill the equilibrium conditions. 



I 
! 
r 

i 

68 

i To do this, integrations by parts of the type 

[ ft v-*^> • ^v- £>ds *5^6 * ^ 
( SH // 32M x , 32M 

- 0 • j ^~ 6wds -   j )  —^ 6wdxdy - 0 - J  j —yE Swdxdy 
Boundary S    3x S    dx 

(6.35) 

are performed. Then equation (6.3U) becomes 

(((*?* 32M 32M        \ 

vw *2^+** / 6wdxdy" ° (6,36) 

The bracketed term of (6.36) is the equilibrium condition (6.26). 

An approximate solution is obtained by assuming a form of the 

deflection 

n 

* " ZZ c<w< (x»y) (6-37) 
i-1 x 1 

where the C are adjustable parameters and the w. satisfy the given 

boundary conditions of w. The C. can be evaluated by the Rayleigh-Ritz 

method where $ i-3 evaluated in terms of w and the n equations 

gg~- 0    i-1, ..., n (6.38) 

determine the C.. The equivalent method of Galerkin may be used with 

equation (6.36). 

The minimum complementary potential energy -.ethod cf Chapter V 

can be applied to a rectangular plate for approximate solutions. 

Expressions (6.2U) determine a quantity M as 
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As in section (5.1), A is expressed in terms of M as 

A - | (1 • B')M 

where 

B« K (£>2n M2" 

(6.U0) 

(6.U1) 

The B    have the sane values as in section £.1.    Inverse moment-curvature Kn 

relations are obtained from (6.2U),   (6.39), and  (6.U0) as 

U  ,M        H /9s . 2(1 • B') 9M2 
j—^y (Mx - M_/2) u    ^- , - w 

XX 5UTT 

- w 
yy WJ 

U /„        M /?x . 2(1 <• B') 3M2 

—gy (My - M^) - -»-j ^jr- , (6.1*2) 

2 „ (1 • B') 3M2 

" Wxy     6(1 - B)      Mxy T>m~' xy 

For the moment-curvature relations  (6.1*2),  the complementary strain 

energy per unit area of the plate is 

.fiji^X df> (6.U3) 

and the complementary potential energy of the plate is 

*c " U   (Wc " "»>*"*• (6.1*1*) 

The first variation of $ must be zero for minimum complementary 

potential energy. 

For the computational work, both M and M can be assumed as x    y 

\-&&*<**)* V£DiVx'7)' (6.1*5) 
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where C and D are parameters, and M . and M , satisfy the riven 

boundary conditions on the moments. The twi3tine moment is calculated 

from (6.26) as 

* dy 
(6.U6) 

dM n    • 3M'   -l 
+ ZZDi j-^d^j + F(*> *G(y)» 

where F(x) and G(y) are chosen so that they pive the correct boundary 

conditions for H   . When the load is prescribed, 6p is zero; thus, 

the term wp can be disregarded in the calculation of $ because it 

has no effect on the first variation of $ . b   is calculated with 
c    c 

equations (6.39), (6.U3), (6.UU), (6.U5) and (6.U6); then the C and 

D. can be obtained from the 2n equations 

df 3$ 
gji - 0   and   ST'O' (6.U7) 

This section has developed methods for the approximate solution 

of the small deflection theory of rectangular plates which parallel 

those for the small deflection theory of circular plates. Similar 

solutions for the large deflection theory of plates, where the stretch- 

ing of the neutral surface is considered are not readily obtainable. 

Even the* elastic solution of such problems gives non-linear equations 

which are difficult to solve, and as we have seen the elastic solution 

is a first step in the iteration process. In addition, due to the 

terms from the stretching of the neutral surface, the strain invariant 

B cannot be expressed as a function of the curvatures only. Therefore, 
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the moments and curvatures cannot be the only variables in the 

formulization of the differential equations. Because of these 

mathematical difficulties, the condition of a plate is usually 

approximated by either the small deflection theory of bending, 

or a large deflection theory where only membrane stresses and 

strains are considered. 
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